Kolmetz Handbook Of Process Equipment Design

AIR COOLED FIN FAN HEAT EXCHANGER SELECTION, SIZING AND TROUBLESHOOTING (ENGINEERING DESIGN GUIDELINES)

<table>
<thead>
<tr>
<th>TABLE OF CONTENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>INTRODUCTION</td>
</tr>
<tr>
<td>Scope</td>
</tr>
<tr>
<td>General Design Consideration</td>
</tr>
<tr>
<td>DEFINITION</td>
</tr>
<tr>
<td>NOMENCLATURE</td>
</tr>
<tr>
<td>THEORY</td>
</tr>
<tr>
<td>Fan</td>
</tr>
<tr>
<td>Fan Shaft and Bearing</td>
</tr>
<tr>
<td>Fan Guard</td>
</tr>
<tr>
<td>Number of Fans</td>
</tr>
<tr>
<td>Fans and Drives</td>
</tr>
</tbody>
</table>
Equipment for Cold Climates 27

Fins 27

Tube Fin Exchanger 30

Fin Efficiency and Extended Surface Efficiency 35

Plate Fin Heat Exchanger 38

High Fin Tubing 41

Tube Bundle Construction 43

Air Side Heat Transfer Coefficient 45

Air Side Pressure Drop 46

APPLICATION 46

Example 1: Design an air-cooled heat exchanger 46

Example 2: Procedure for estimating transfer surface, plot area & horsepower 57

REFERENCES 93
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.

Figure 8: L Footed Tension Wound a

Figure 9: L Footed Tension b

Figure 10: Embedded

Figure 11: Extruded

Figure 12: Double L with overlapped metal strip wounded on the core tube.

Figure 13: Knurled L with metal strip wounded on the core tube with knurled surface.

Figure 14: Configuration of a forced draft air cooled heat exchanger designed for external recirculation of warm air during cold weather. The coil in the diagram is the tube bundle.

Figure 15: (a) Individually finned tubes; (b) flat or continuous fins on an array of tubes.

Figure 16: Individually Finned Tubes.

Figure 17: Flat or continuous fins on an array of tubes; (a) wavy fin, (b) multi louver fin, (c) fin with structured surface roughness (circular dimples), (d) parallel louver fin; all four fins with staggered rounds tubes, (e) wavy fin on inline flat tubes, and (f) multi louver fin with inline elliptical tubes.

Figure 18: Fin efficiency of straight and circular fins of uniform thickness.

Figure 19: Flat fin over (a) an inline and (b) staggered tube arrangement; the smallest representative shaded segment of the fin for (c) an inline and (d) a staggered tube arrangement.

Figure 20: Flat webbed tube and multi louver fin automotive condenser.
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.
INTRODUCTION

Scope

This engineering design guideline covers the selection and sizing methods for air cooled heat exchanger which are commonly used in typical industrial processes. It assist engineers to understand the basic design of the different types of air cooled heat exchanger, and increases their knowledge in selection and sizing.

An Air-Cooled Heat Exchanger is a device for rejecting heat from a fluid directly to ambient air. This is in contrast to rejecting heat to water and then rejecting it to air, as with a shell and tube heat exchanger and a wet cooling tower system.

The obvious advantages of an air cooler is that it does not require water, which means that equipment requiring cooling need not be near a supply of cooling water. The air-cooled heat exchanger provides a means of transferring the heat from the fluid or gas into ambient air, without environmental concerns, or without great ongoing cost such as water supply and treatment.

A fin-fan is a type of heat exchanger that forces air over a set of coils to cool the process. It is also referred to as an air cooled heat exchanger. Fin fan heat exchangers are generally used where a process system generates heat which must be removed, but for which there is no local use. In fin-fan heat exchanger, air is forced in cross-flow across tubes carrying processing fluid.
General Design Consideration

Air-cooled heat exchangers should be located so that the hot air emitted is not a hazard or an inconvenience to personnel or has an adverse effect on the operation of adjacent equipment.

The air-cooled heat exchanger may be either a forced-draft exchanger or an induced draft exchanger and may include the components and any auxiliaries such as ladders, walkways and platforms.

Air cooled exchangers are classed as forced draft when the tube section is located on the discharge side of the fan, and as induced draft when the tube section is located on the suction side of the fan.

The applications for air cooled heat exchangers cover a wide range of industries and product, however generally they are used to cooler gases and liquids when the outlet temperature required is greater than the surrounding ambient air temperature.
Table 1. The Advantages and Disadvantages of Each Model

<table>
<thead>
<tr>
<th>Forced Draft</th>
<th>Induced Draft</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advantages</td>
<td>Disadvantages</td>
</tr>
<tr>
<td>Lower horsepower requirement due to lower inlet air temperatures</td>
<td>Less uniform distribution of air over the bundle.</td>
</tr>
<tr>
<td>Better accessibility of fans and bearings.</td>
<td>Increased possibility of air recirculation.</td>
</tr>
<tr>
<td>Better accessibility of bundles for replacement.</td>
<td>Low natural draft capability on fan failure.</td>
</tr>
<tr>
<td>Accommodates higher process inlet temperatures.</td>
<td>Exposure of coils to sun, rain, etc.</td>
</tr>
</tbody>
</table>
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.

Figure 1. Typical Side Elevation of Air Coolers
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.

Figure 2. Typical Forced Draft Plan
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up-front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.

Figure 3. Typical Induced Draft Plan
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.
Fan sizes range from 3 ft to 28 ft diameter. However, 14 ft to 16 ft diameter is the largest diameter normally used. Fan drivers may be electric motors, steam turbines, hydraulic motors, or gas-gasoline engines. A speed reducer, such as a V-belt drive or reduction gear box, is necessary to match the driver output speed to the relatively slow speed of the axial flow fan. Fan tip speeds are normally 12,000 ft/min or less. General practice is to use V-belt drives up to about 30 bhp and gear drives at higher power. Individual driver size usually limited to 50 hp.

Two fan bays are popular, since this provides a degree of safety against fan or driver failure and also a method control by fan staging. Fan coverage is the ratio of the projected area of the fan to the face of the section served by the fan. Good practice is to keep this ratio above 0.40 whenever possible because higher ratios improve air distribution across the face of the tube section. Face area is the plan area of the heat transfer surface available to air flow at the face of the section.

The basic heat transfer relationships that exist for shell and tube exchangers also apply to the design of an air-cooled heat exchanger. However, there are more parameters to be considered in the design of an air cooled heat exchanger.

Since the air cooled heat exchanger is exposed to changing climatic conditions, problems of control of the air cooler become relevant. A decision must be made as to what the actual ambient air temperature to be used for the design.
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.

Some of the governing factors in the design of the air cooler are:

- Tube diameter,
- tube length,
- fin height,
- number of tube rows,
- number of passes,
- face area,
- horsepower availability,
- plot area.

Fin fan coolers are also known as air cooled heat exchanger. There are variety of fin types that can be considered dependent upon the environment and design conditions.

The following factors should be considered when selecting a fin type:

- Design temperature
- Corrosive properties of the air
- Temperature cycling frequency
- Cleaning method and frequency
- Type of fouling debris in air
- Isolation of cooler

In the fin fan coolers the ambient air used as the cooling media to cool. The main hot fluid which is used in tube side. All the tubes in the coolers are finned tubes only. The finned tubes are having more contact surface hence the fin fan cooler is one the best closed circuit and water saveable cooling systems.

Fan selection at design conditions shall ensure that at rated speed the fan can provide, by an increase in blade angle, a 10% increase in air flow with a corresponding pressure increase. Since this requirement is to prevent stall and inefficient operation of the fan, the resulting increased power requirement need got govern the driver rating.
Fans and fan hubs

Two or more fans aligned in the direction of tube length shall be provided for each bay, except that single-fan arrangements may be used if agreed by the purchaser.

Fans shall be of the axial flow type.

Each fan shall be located such that its dispersion angle shall not exceed 45° at the bundle centreline.

The fan tip speed shall not exceed the maximum value specified by the fan manufacturer for the selected fan type. Fan type speed shall not exceed 60 m/s (12000 ft/min) unless approved by the purchaser. In no case shall the fan tip speed exceed 80 m/s (16000 ft/min). Noise limitations may require lower speeds.

The radial clearance between the fan tip and the fan orifice ring.
Figure 5. Fan Dispersion Angle

Note
1 Plenum
2 Induced draught
3 Centreline of bundle
4 Fan ring
5 Forced draught
6 Side
7 Front

These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.
Table 2. Radial Clearances

<table>
<thead>
<tr>
<th>Fan diameter</th>
<th>Minimum</th>
<th>Maximum</th>
</tr>
</thead>
<tbody>
<tr>
<td>M w 1,0 and u 3,0</td>
<td>6 mm (1/4 inch)</td>
<td>13 mm (1/2 inch)</td>
</tr>
<tr>
<td>w 3 and u 9</td>
<td>6 mm (1/4 inch)</td>
<td>16 mm (5/8 inch)</td>
</tr>
<tr>
<td>>3,0 and u 3,5</td>
<td>6 mm (1/4 inch)</td>
<td>19 mm (3/4 inch)</td>
</tr>
<tr>
<td>(>9 and u 11)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>>3,5</td>
<td>(>11)</td>
<td></td>
</tr>
</tbody>
</table>

Each fan assembly shall be balanced by one of the following means:

- Dynamic balancing as an assembly
- Dynamic balancing of the hub and static moment-balancing of the blades.

For fans having a diameter larger than 1.5 m (5 ft), individual fan blades shall be manually adjustable for varying blade pitch. The use of automatic control for varying the blade pitch shall be as specified by the purchaser.

Fans equipped for pneumatically-actuated, automatically-controlled pitch adjustment of blades shall comply with following.

1. If a single controller operates more than one actuator, the purchaser shall provide an isolating valve in the control signal line for each actuator, to allow maintenance.

2. The pneumatic actuator may be equipped with a positioned or a bias relay.

3. If provided, the positioned or bias relay shall be designed to operate on a 20 kPa gauge (3 psig to 15 psig) pneumatic control signal. Each change in the control signal shall result in a corresponding change in the fan blade pitch. The operating range of the positioned shall be adjusted so that the maximum pitch obtained is equal to the selected design blade angle setting. The fan manufacturer shall set maximum and minimum blade pitch limit stops. Unless otherwise specified by the purchaser, the minimum blade pitch limit shall result in an essentially zero air flow.
4. The vendor shall furnish a flexible tubing connection approximately 300 mm (12 inches) long for connection to the purchaser’s control-air line. The tubing shall connect to a rigid steel or alloy pipe or tube that terminates outside the fan enclosure. A terminal fitting for connection to the purchaser’s control-air line shall be DN 8 (NPS ¼). Pipe threads shall be taper pipe threads.

5. The purchaser shall specify the direction of change of the fan pitch with loss of control-air pressure.
DEFINITIONS

Bare Tube Face – Outside surface of prime tubes based on length measured between outside face of header tube sheets in square meters.

Bay – One or more K-Fin sections, mounted on a self-supported structure complete with mechanical equipment.

Finned Tube Surface – Total outside surface (exposed to air) based on length of tubes measured between outside face of header tube sheets in square meters.

Forced Draft Type – Designed with tube bundles located on the discharge side of the fan.

Induced Draft Type – Designed with tube bundles located on the suction side of the fan.

Section – Assembly of two headers, finned tubes and side channels.

Tube Bundle – Assembly of headers, tubes and frames.
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of up front engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.
These design guidelines are believed to be as accurate as possible, but are very general and not for specific design cases. They were designed for engineers to do preliminary designs and process specification sheets. The final design must always be guaranteed for the service selected by the manufacturing vendor, but these guidelines will greatly reduce the amount of upfront engineering hours that are required to develop the final design. The guidelines are a training tool for young engineers or a resource for engineers with experience.

This document is entrusted to the recipient personally, but the copyright remains with us. It must not be copied, reproduced or in any way communicated or made accessible to third parties without our written consent.